Kimi-Linear is a 3B active, <6T tokens experiment. Its architecture is nothing sci-fi (except it works) – NoPE MLA + fancy GatedDeltaNet. this very strongly suggests to me that a) Gemini long-context attention doesn't have any secret sauce b) it's all about TPUs. No "Titans".
Context Arena Update: Added kimi-linear-48b-a3b-instruct [11-08] and kimi-k2 (Thinking) [11-06] to the MRCR leaderboards. The Linear 48b results are fascinating! It actually outperforms the new Gemini 3.0 Pro Thinking on 4-needle and 8-needle tasks at higher context lengths (512k+). I've added it to 2needle, 4needle, and 8needle. kimi-k2 (Thinking) lands lower on the leaderboards (Rank #22 for 2-needle AUC @ 128k), with a hard context ceiling around 262k. I did not run it for 2needle and 4needle. All results at: The performance curve for the Linear model is distinct: while it underperforms Gemini 3 significantly at shorter contexts (<=256k) on the difficult 8-needle test, its degradation slope is much flatter. Gemini starts higher and drops fast; Kimi starts lower but holds steady, overtaking Gemini at the higher end. However, note that kimi-linear-48b has noticeable performance drops past 128k on the easier 2 & 4 needle tests. Additionally, due to lower token efficiency compared to Gemini/GPT, only ~60% of the 1M token tests successfully ran (hitting limits/OOM). So some caution with the results at the 1M level. kimi-linear-48b results: 2-Needle Performance (@ 128k / @ 1M): - AUC: 96.5% (vs Gem 3: 99.5%) / 81.7% (vs Gem 3: 85.5%) - Pointwise: 96.0% (vs Gem 3: 99.0%) / 77.0% (vs Gem 3: 72.2%) 4-Needle Performance (@ 128k / @ 1M): - AUC: 85.5% (vs 85.8%) / 62.7% (#1, beating Gem 3: 57.3%) - Pointwise: 83.7% (vs 80.8%) / 51.5% (#1, beating Gem 3: 34.3%) 8-Needle Performance (@ 128k / @ 1M): - AUC: 54.9% (vs 73.0%) / 43.8% (#1, beating Gem 3: 39.0%) - Pointwise: 49.0% (vs 54.2%) / 35.3% (#1, beating Gem 3: 24.5%) A very different architectural approach yielding impressive stability at scale. Because of its current price point, it is very competitive for long context (MRCR). Enjoy. @Kimi_Moonshot @GoogleDeepMind @googleaidevs @OpenAI @OpenAIDevs
5,95 тис.
11
Вміст на цій сторінці надається третіми сторонами. Якщо не вказано інше, OKX не є автором цитованих статей і не претендує на авторські права на матеріали. Вміст надається виключно з інформаційною метою і не відображає поглядів OKX. Він не є схваленням жодних дій і не має розглядатися як інвестиційна порада або заохочення купувати чи продавати цифрові активи. Короткий виклад вмісту чи інша інформація, створена генеративним ШІ, можуть бути неточними або суперечливими. Прочитайте статтю за посиланням, щоб дізнатися більше. OKX не несе відповідальності за вміст, розміщений на сторонніх сайтах. Утримування цифрових активів, зокрема стейблкоїнів і NFT, пов’язане з високим ризиком, а вартість таких активів може сильно коливатися. Перш ніж торгувати цифровими активами або утримувати їх, ретельно оцініть свій фінансовий стан.